1 线性代数和NDArray

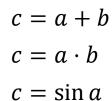
概要

- >深度学习简要概述
- ▶线性代数
- **≻**NDArray

线性代数

元素

▶简易运算



▶范数

$$|a| = \begin{cases} a & \text{if } a > 0 \\ -a & \text{otherwise} \end{cases}$$

$$|a+b| \leq |a|+|b|$$

$$|a \cdot b| = |a| \cdot |b|$$

向量

▶简易运算

$$c = a + b$$
 where $c_i = a_i + b_i$
 $c = \alpha \cdot b$ where $c_i = \alpha b_i$
 $c = \sin \alpha$ where $c_i = \sin a_i$

▶范数

$$\| a \|_{2} = \left[\sum_{i=1}^{m} a_{i}^{2} \right]^{\frac{1}{2}}$$

$$\| a \| \ge 0 \text{ for all } a$$

$$\| a + b \| \le \| a \| + \| b \|$$

$$\| a \cdot b \| = |a| \cdot \| b \|$$

向量

➤ Mathematician's 'parallel for all

$$c = a + b$$
 向量加

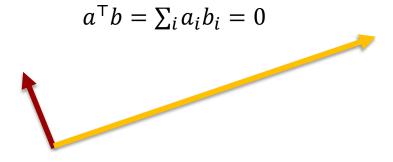
$$rac{}{} c = \alpha \cdot b$$
 $rac{}{}$ 数乘

向量

▶点积

$a^{\mathsf{T}}b = \sum_{i} a_{i}b_{i}$

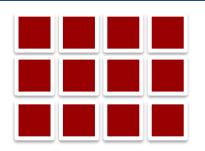
▶正交性



>如果我们有两个向量与第三个正交,它们的线性组合向量也正交

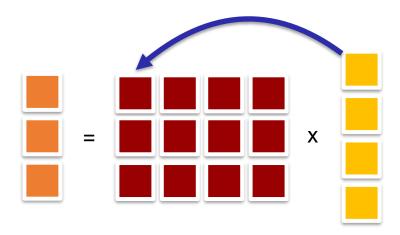
▶简易运算

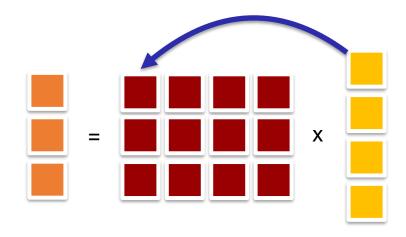
$$C = A + B$$
 where $C_{ij} = A_{ij} + B_{ij}$
 $C = \alpha \cdot B$ where $C_{ij} = \alpha B_{ij}$
 $C = \sin A$ where $C_{ij} = \sin A_{ij}$



⑩矩阵相乘 (矩阵 x 向量)

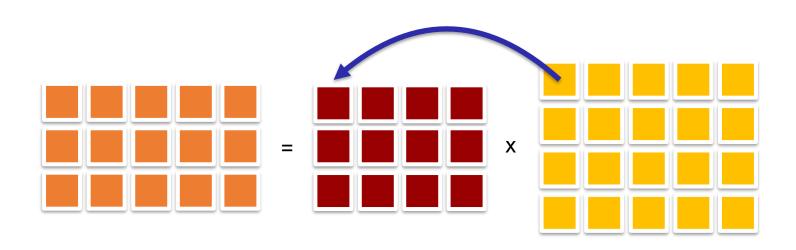
$$c = Ab$$
 where $c_i = \sum_j A_{ij}b_j$





⑩矩阵相乘 (矩阵 x 矩阵)

$$C = AB$$
 where $C_{ik} = \sum_{j} A_{ij} B_{jk}$



▶范数

$$c = A \cdot b$$
 hence $\parallel c \parallel \leq \parallel A \parallel \cdot \parallel b \parallel$

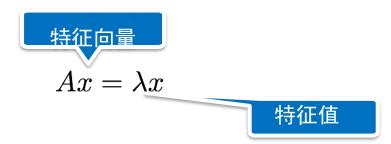
- ▶常见范数
 - ➤Frobenius 范数

$$\|A\|_{\mathsf{Frob}} = \left[\sum_{ij} A_{ij}^2\right]^{\frac{1}{2}}$$

➤H-infinity 范数

$$\|A\|_{F} = \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} |a_{ij}|^{2}} = \sqrt{\operatorname{trace}(A^{*}A)} = \sqrt{\sum_{i=1}^{m \{m,n\}} \sigma_{i}^{2}}$$

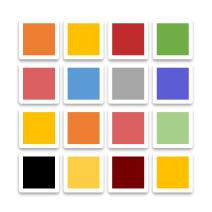
- ▶特征值和特征向量
 - ▶对于一个给定的线性变换A,它的特征向量x,经过这个线性变换之后,得到的新向量仍然与原来的v保持在同一条直线上,但其长度或方向也许会改变。



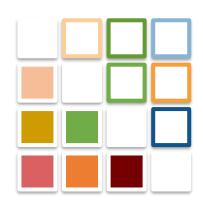
▶对称矩阵总会有相应的特征向量和特征值

特殊矩阵

▶对称性 & 非对称性



$$A_{ij} = A_{ji}$$
 and $A_{ij} = -A_{ji}$



▶正定性

$$||x||^2 = x^T x \ge 0$$
 generalizes to $x^T A x \ge 0$

▶(特征值均为非负数)

Special Matrices

- ▶正交矩阵
 - ▶所有的列向量都是单位正交向量
 - ▶所有的行向量都是单位正交向量
 - ▶可以写为

$$UU^{\mathsf{T}} = \mathbf{I}$$

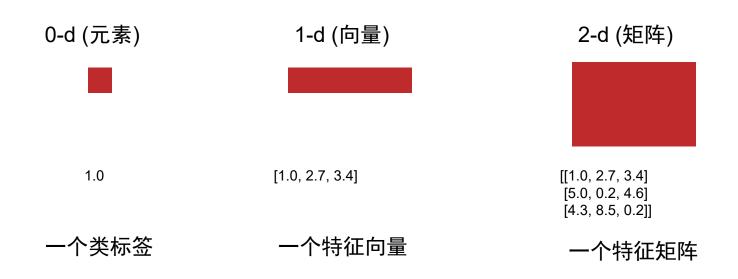
- ▶置换矩阵
 - ▶矩阵的每一行和每一列的元素中只有一个1,其余元素都为0

P where $P_{ij} = 1$ if and only if $j = \pi(i)$

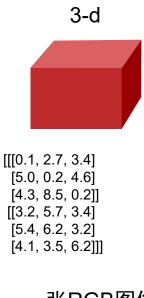
NDArray

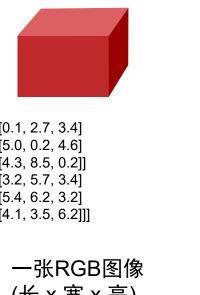
NDArray

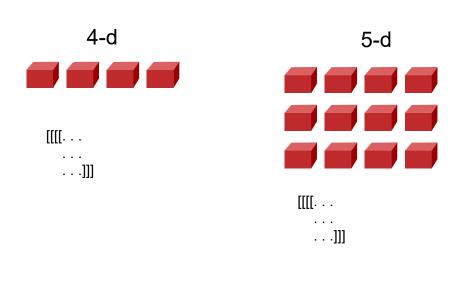
- ▶NDArray是存储和变换数据的主要工具
- ▶NDArray提供GPU计算和自动求梯度等更多功能,这使NDArray更加适合深度学习



NDArray



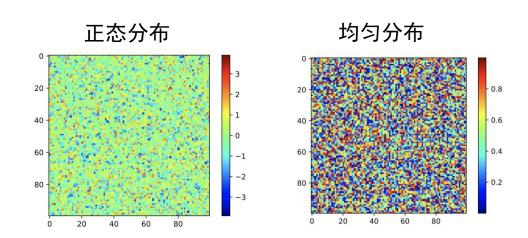




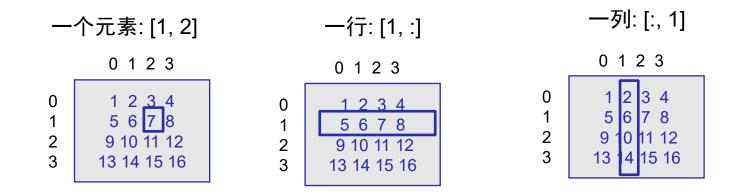
创建NDArray

- ▶按如下标准创建NDArray
 - ➤形状(shape), e.g. 3 x 4
 - ▶元素值, e.g 全部为0, 或者随机值

100 x100 矩阵



元素索引



总结

- >深度学习简要概述
- ▶线性代数
- **≻**NDArray